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Abstract

The central density, density gradient, and goodness-of-fit for the negative 
exponential model are estimated using housing unit densities for census tracts for 40 
large urban areas from 1970 to 2020. Nonlinear regression is used to estimate the model 
parameters. The values of the estimates in 2020 show extremely wide variation across 
the urban areas. Larger and older urban area, especially in the Northeast, tend to have 
the highest central densities, gradients and  values, while areas in the Sunbelt are 
among the lowest. These values have generally declined from 1970 to 2020, again with 
wide variation across areas. Mean  drops from 0.41 to 0.26, suggesting declining 
importance of the Central Business District associated with the decentralization of 
employment. The  values for some areas in 2020 are less than 0.10; the negative 
exponential model is accounting for a very small proportion of the variation in density. 
But despite an overall decline in central density over the fifty-year period, the mean 
increases in the most recent decades, with an especially large jump from 1970 to 2020, 
raising questions regarding possible shifts in the patterns of urban change.

Introduction

Contemporary consideration of the negative exponential decline of population 
density goes back to an article by Clark (1951), though several authors had made similar 
observations earlier. Clark examines the decline of population densities for numbers of 
cities at different times in the nineteenth and twentieth centuries and shows the patterns 
generally conform to a negative exponential decline with distance from the center. Large 
numbers of subsequent studies have confirmed this. Reviews of this extensive literature 
include Thrall (1988), McDonald (1989), and Smith (1997). Anas, Arnott, and Small 
(1998) cite results from numerous studies in their broader review of urban structure. In 
a comprehensive study of urban patterns around the world, Angel (2012) discusses the 
negative exponential decline of densities.
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Muth (1969) and Mills (1972) provide an economic basis for understanding this 
phenomenon, the monocentric model in urban economics. They assume employment is 
concentrated in the central business district (CBD), to which residents commute. In 
selecting residential locations, people make a tradeoff between the costs of commuting 
and the desire for more space. Commuting costs are reduced for locations closer to the 
CBD, so residents were willing to pay more for those locations. Land rents then decline 
with distance, allowing households to obtain more space and live at lower densities 
farther from the center. Some simple but reasonable assumptions regarding functional 
forms and parameters yield the negative exponential decline of density.

During the nineteenth century and the first part of the twentieth century, 
employment was concentrated in and near the CBD, which was the major commuting 
destination. But employment has become progressively more decentralized and the 
journey-to-work less oriented towards the center. In the same work cited presenting the 
monocentric model, Mills (1972) also examines the decentralization of employment over 
time. The basic assumption of the monocentric model of the concentration of 
employment in a single center is less consistent with the evolving distribution of 
employment. This raises the question of the applicability of the negative exponential 
model over time. To what extent might the ability of the model to account for 
population and housing unit densities be declining?

Addressing what the extensive literature documenting the negative exponential 
model can say in response to this requires a brief detour on how the parameters of the 
model can be estimated. The original approach involved using data on densities for 
small areas (such as census tracts) and looking at those densities in relation to distance 
to the CBD, either graphically as Clark did, or by using regression. This approach not 
only provides for the estimation of the model parameters but also provides a basis for 
assessing how closely the densities conform to a negative exponential decline. This 
requires large amounts of data, which until the relatively recent availability of the 
necessary data in digital form was a laborious process.

Mills (1972, again!) devised an an ingenious solution. Since significant evidence 
had shown that the negative exponential model describes the decline of densities, he 
simply assume this to be the case. Then one can estimate the parameters of the model 
using just two data pairs, the population and estimated radius of the central city and of 
the entire urban area. A key limitation of the two-point method arises from the initial 
assumption that the density in the urban area declines as a negative exponential 
function of distance. This allows the estimation using the limited data but provides no 
basis for assessing the extent to which the distribution conforms to the negative 
exponential model, as that has been assumed.

Using the two-point method is of course is much easier and faster than using 
small-area data. This became a popular, widely used method for looking at the negative 
exponential decline of density. Studies looking at densities in significant numbers of 
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urban areas for multiple years have especially taken this approach. But that has meant 
that such studies could not address questions about the degree to which distributions of 
density conform to the negative exponential model and whether this may have declined 
over time.

This paper examines the negative exponential decline of housing unit densities 
for forty large urban areas in the United States using data for census tracts from 1970 to 
2020. The estimated parameters provide measures of the density patterns and their 
changes up through the most recent census. But especially important is that measures of 
the goodness-of-fit of the models provide evidence of the degree to which densities 
conform to a negative exponential pattern. This allows examination of changes over 
time that may be associated with the decreased importance of the CBD.

The following section describes the data used and the delineation of consistent 
urban areas using the census tract housing unit data. Next is the description of the 
procedures for model estimation, arguing for the use of nonlinear regression. (A brief 
appendix compares these results with those obtained using log linear regression, which 
is typically employed.) Interpretation of the parameters of the negative exponential 
model have emphasized the use of the density gradient and its decline as a measure of 
decentralization. The case is made that the density gradient is not a very good measure 
for this. Then come the results. One section addresses the negative exponential decline 
of density in 2020, describing the results and presenting some very simple exploratory 
models of factors associated with the estimated values. This is followed by a similar 
treatment of the changes in the values from 1970 to 2020, providing evidence addressing 
the question posed about the performance of the model over time. 

The Urban Patterns 2 data

The Urban patterns 2 dataset includes housing unit counts for census tracts from 
1950 to 2020 that have been used to delineate 56 large urban areas in the United States 
for each census year. Data for 2010 and 2020 are from the Census and from the National 
Historical Geographic Information System (Manson, et al. 2022). Data from the censuses 
from 1970 to 2000 are from a unique dataset from the Urban Institute and Geolytics 
(2003) with the data normalized to 2000 census tract boundaries. Housing units for 1950 
and 1960 are estimated from the data on housing units by year built from later years, 
taking the numbers built before 1950 and 1960 as the estimates of the numbers present 
in those years. These estimates include error resulting from changes to the housing 
stock over time, especially the loss of units, but analyses suggest that the estimates for 
urban area totals are reasonable for two decades back in time. Census tract boundaries 
for 2020 are used for the dataset. The census tract relationship files are used to estimate 
values for the 2020 tracts from data for earlier years. Detailed documentation of the 
dataset and listings of all data sources are included in Ottensmann (2023a).
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Urban areas consist of contiguous census tracts that meet urban criteria. Some 
large areas of continuous urban tracts include what should reasonably be considered 
two or more urban areas. Areas in the northeastern United States are a major example. 
To distinguish separate urban areas, the Combined Statistical Areas (CSAs) are used 
(and MSAs that are not included in a CSA). CSAs are used rather than the more 
commonly used Metropolitan Statistical Areas (MSAs) as they better represent the full 
extent of urban areas. The CSAs are only used to identify the urban areas, such as 
Philadelphia, New York, and Hartford. The boundaries are established at the locations 
where the urban areas have become contiguous as they have expanded. The urban areas 
included in the dataset are the 56 areas containing more than 300,000 housing units in 
2020.

The criteria defining the urban areas are as close as possible to those being used 
for delineating the 2020 census Urban Areas, which include what were formerly called 
Urbanized Areas (U.S. Census Bureau 2022). A census tract is considered to be urban 
and is included in an urban area if it has a housing unit density greater than 200 
housing units per square mile. To include urban territory that is nonresidential, a tract is 
also included if over one-third of its area has impervious surface of 20 percent or more. 
An additional condition is that a tract is only considered to be urban if it has been 
designated as urban for the following census year. This is to provide a pattern of 
cumulative expansion of the urban areas. This direction has been chosen rather than the 
reverse (if urban, then urban later) because the more recent data are considered to be 
more accurate.

Urban areas include multiple areas of urban territory that were originally 
separate but that have since growth together. Areas that are sufficiently large are 
considered to be urban centers and are included in an urban area with tracts assigned to 
one of the urban centers. The Dallas-Fort Worth area is an example. As the areas become 
contiguous, tracts are assigned to the center growing more rapidly toward the other and 
to provide more continuous, less irregular boundaries. Areas are considered separate 
urban centers and are included in an urban area if the number of housing units in 2020 
exceeds 16 percent of the total units in the urban area. This cutoff was established by 
identifying as candidates all initially separate areas deemed large enough to potentially 
be considered urban centers and then setting the threshold. The smallest urban centers 
in relation to the total size of the urban area are Providence, with Boston; Tacoma, with 
Seattle; and High Point, with Greensboro and Winston-Salem. Next highest, at 11 
percent are Port Charlotte in the Sarasota-Bradenton area and Winter Haven in the 
Orlando area. The names given to the urban areas include the names of all urban 
centers that have been included.

The negative exponential model predicts the decline of density with distance 
from the center. This is taken to be the location of the CBD. The last time the Census 
identified CBDs was for the 1982 economic censuses. Many researchers have continued 

4



to use this information as the best available for designating CBDs. The Census report 
lists the census tract or tracts constituting the CBD for a large number of cities (U.S. 
Census Bureau 1983). The CBD tracts for each urban center are identified on a map, 
combined into a single feature, and the centroid of the feature is determined. This is 
taken as the point location of the CBD for each urban center. Distance to the CBD in 
miles from the centroid of each census tract to the CBD is calculated. For urban areas 
having two or three urban centers, distance is to the CBD for the center to which the 
tract is assigned in the delineation of the urban areas.

Nonlinear estimation of the negative exponential model

This section addresses the procedures followed in the estimation of the 
parameters of the negative exponential model using housing unit densities for the 
urban areas. The major focus is on the use of nonlinear regression for the estimation.  1

Also addressed is the measurement of the goodness-of-fit of the model, and the urban 
areas and years of data included in the analysis.

The usual method used to estimate the parameters of the negative exponential 
model from small area data for density is to use standard linear regression with the log-
transformed version of the model—log linear regression. The following paragraphs 
argue for the use of nonlinear regression procedures instead. The possibility of using 
nonlinear regression in this application has received very limited attention. Kemper and 
Schmenner (1974) conclude that nonlinear regression performs better for analysis of the 
negative exponential decline of manufacturing employment density. White (1977) uses 
both log linear and nonlinear methods, but his primary objective is the assessment of 
the accuracy of Mills’ (1972) two-point method of estimation. Greene and Barnbrock 
(1978) compare the performance of the two methods by examining the residuals. 
(Curiously they do not present and compare parameter estimates.) They ultimately 
conclude that the residuals do not show a pattern indicating an underestimate of 
densities near the center as Kemper and Schmenner have found. Finding this for the one 
urban area they examined, they consider the log linear model “adequate.”

The model for the negative exponential decline of density with distance from the 
center can be expressed as

where  is the density (housing unit density in the current research) in census tract ,  
is the distance from the census tract to the center of the urban area.  is the central 

Di = D0e−βdi

Di i di
D0

 The choice of nonlinear regression for the negative exponential model is addressed more fully in an 1

earlier paper (Ottensmann 2022b).

5



density and  is the density gradient, both parameters to be estimated from the data, 
and  is the base of the natural logarithms.

The virtually universal method used to estimate the parameters from data for 
census tracts involves transforming the equation by taking the natural logarithm of both 
sides, giving

This is linear in log density and distance, so the model can be estimated using ordinary 
least squares regression. This is referred to as log linear estimation.

As the two equations above are mathematically equivalent, it might appear to 
make no difference which is used as the starting point for the estimation. This is not 
true. The data will not fit the model perfectly. Estimation involves selecting values for 
the parameters that minimize the error in prediction. So the equation for the estimation 
necessarily includes an error term which is generally the difference between the actual 
and predicted densities and is added to the equation:

where  is the error in prediction for tract . Now note that the dependent variable is the 
log of density, so the model predictions and the the error terms are likewise measured in 
terms of the log of density. This means that the error associated with the difference in 
densities between 20,000 and 30,000 is identical to the error associated with the 
difference between 200 and 300, 0.4055. By taking the logs, the errors in predicting 
densities for higher density tracts are made relatively smaller and are given less weight 
in the estimation of the model parameters.

Nonlinear estimation procedures can add the error term to the original, nonlinear 
equation:

The error terms are then in units of density, not log density, preserving the larger 
magnitudes of error at higher densities. Those working with the negative exponential 
model seem to be more interested in density than the log of density. After doing the log 
linear estimation to obtain the estimate of the log of central density, it is nearly always 
transformed back to density terms when reporting the results. This suggests that using 
nonlinear estimation to minimize the error in prediction in terms of density rather than 
log density would be more appropriate.

The magnitudes of errors and the effect of the difference between nonlinear and 
log linear estimation of the negative exponential model will be greater for urban areas 

β
e

ln Di = ln D0 − βdi

ln Di = ln D0 − βdi + ei

ei i

Di = D0e−βdi + ei
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having more census tracts having higher densities. The extreme example is then the 
New York urban area, which has by far the highest densities. Figure 1 plots the housing 
unit densities of the thousands of census tracts in the New York area versus distance to 
the CBD in miles. The inset in the upper right expands the lower-left quarter of the 
original plot to display more detail. Nonlinear and log linear estimation are used to 
estimate the parameters for negative exponential models. The predicted densities are 
shown on the graphs, red for the nonlinear estimates and blue for the log linear 
estimates. The difference in the central densities—where the lines intersect the y-axis—
is striking. The nonlinear estimate of the central density is 58,533 units per square mile 
while the log linear estimate is only 13,584. The very high density tracts extending 
upward closer to the center have little effect on the estimate of the log linear central 
density. The red, nonlinear prediction line goes more closely through the masses of

Figure 1. Housing unit densities versus miles from the CBD for census tracts in the 
New York urban area in 2020 with predicted densities using negative exponential 
models with nonlinear and log linear estimates of model parameters. 
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census tracts moving away from the center. It is not perfect—the pattern does not 
exactly conform to a negative exponential decline. But the nonlinear estimate certainly 
appears to provide a more reasonable prediction of densities than the log linear 
estimate.

The nonlinear regression procedure in Stata is used to estimate the parameters of 
the negative exponential model for each of the urban areas and for the different years of 
data. The procedure works by minimizing the sum of squared deviations of the errors in 
prediction, the error term added to the negative exponential model.

The regression reports the sum of squared errors analogously to linear 
regression. But nonlinear regression does not necessarily include a constant term like 
linear regression. Stata calculates a value for the total sum of squares that does not use 
squared deviations from the mean but rather squared deviations from zero. This value 
is used along with the error sum of squares to calculate a value for  following the 
procedures used in linear regression. Because the total sum of squares is larger than that 
used for linear regression, those  values will be larger and do not represent the 
proportion of the variation in the dependent variable accounted for by the model.

To provide a more meaningful measure of the goodness-of-fit of the model, an 
alternative approach is taken. The predicted densities produced by the estimated model 
are regressed on the actual densities using linear regression, producing a value called 
here the prediction . This will be the proportion of the variation in density accounted 
for by the estimated negative exponential model. All of the  values reported in this 
paper are these prediction  measures.

Two aspects of the data being used restrict the estimation of the negative 
exponential model and the results to be considered. The model predicts the decline of 
density with distance from the center, the CBD. It assumes a single center. Urban areas 
having two or three urban centers would be expected to show declines in density with 
distance from the CBDs for each of the centers, with the effects of the CBDs interacting, 
and producing multiple sets of parameters. While there have been some attempts to 
examine density decline in such contexts (e.g., Griffith 1981; Gordon, Richardson, and 
Wong 1986), this is beyond the scope of what is being done here. As a result, the 
analysis is restricted to the 40 urban areas in the dataset having a single urban center.

The data on housing units by census tract in the dataset extend back to 1950 and 
the negative exponential models were estimated for each census year from 1950 to 2020. 
Inspection of the results suggests inconsistencies for the first two years of estimates 
before 1970. Prediction  values generally increase in the first two decades and then 
decline in a steady fashion. Standard deviations of changes from 1950 to 2020 were 
significantly higher than changes from 1970. Some of the percent changes from 1950 
were ridiculously high.

In appears that the problems may result at least in part from the small sizes of 
some of the urban areas in the earlier years. In 1950, the Las Vegas urban area had only 
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about 6,000 housing units, and Orlando had fewer then 20,000. Ten of the urban areas, 
one quarter of the total, had fewer than 30,000 housing units in 1950. By 1970, only one 
area had fewer than 70,000 units. Las Vegas only had 19 census tracts in the urban area 
in 1950. By 1970, only two areas had fewer than 100 tracts.

For very small areas, distances to the center will be smaller and will not vary as 
much as in larger areas. These smaller distances may be of lesser importance for 
households’ choice of location and density. Examination of the results for the smaller 
urban areas show most exhibiting inconsistencies in the pattern of estimates in the early 
years.

If the patterns of change over time were perfectly consistent over the entire 
period, then prediction of the change from 1950 to 2020 using the change from 1970 to 
2020 should result in a perfect prediction. The magnitude of the residual from the 
regression is then a measure of the departure from consistency for each urban area. The 
correlation of the absolute value of the residuals with the size of the urban area, the 
number of housing units in 1950, is -0.58. In other words, the smaller the area, the 
greater the inconsistency. This provides some support to the notion that the small sizes 
present an issue for the negative exponential model and contribute to the inconsistency 
in the estimates for the early years. Given this, the decision has been made to include 
only the results from 1970 forward in the analysis that follows.

The density gradient is not a good measure of decentralization

The estimated central density and density gradient provide useful measures 
describing the general overall distribution of housing unit densities in an urban area. 
The predicted , the measure of goodness-of-fit, indicates how closely the distribution 
conforms to the predictions of the negative exponential model. These values can be 
compared across urban areas and the changes in the values over time can be examined.

Mills (1972) gives prominence to the notion that the decline of the density 
gradient over time could be used as a measure of the decentralization of population and 
employment in an urban area. It further follows that the density gradient is therefore a 
good measure of the level of centralization or decentralization in an urban area. This 
has come to be the common interpretation of the density gradient.

It is understandable how one might have arrived at this conclusion. If 
decentralization takes place over time in an urban area, the density gradient will indeed 
fall. But the converse is not true. This is the logical problem of affirming the consequent. 
The decline in the density gradient is not necessarily associated with decentralization. It 
may be but it needn’t be.2

R2

 More extensive discussion of this issue is in an earlier paper (Ottensmann 2022a).2
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Demonstrating that the density gradient can decline without decentralization of 
population or housing units is quite simple. Begin with a circular urban area with 
densities declining according to the negative exponential model. Densities at time 1 
decline from the central density  at the center to the small minimum density for 
territory to be considered part of the urban area at distance . This is illustrated by the 
red line in Figure 2. Now assume the urban area grows, increasing the number of 
housing units while continuing to conform to the negative exponential model with the 
central density unchanged. The urban area necessarily has to expand outwards to 
accommodate at least some of the new growth beyond the original edge of the area. The 
density curve at time 2, in blue, extends from the same central density as before but 
goes farther out to  where the density declines to the minimum urban density.

The density gradient at time 2 is lower than the density gradient at time 1. But at 
no location has the density declined. It has actually increased everywhere except at the 
center, where it has remained constant. No net outmovement has taken place. This 
would seem to make it difficult to conclude that decentralization has taken place. To be 
sure, some people and housing units are located farther from the center than any at time 
1. The urban area has expanded in terms of area. But that cannot be sufficient to 
conclude that decentralization has taken place. If it were, then growth of an urban area

Figure 2. Negative exponential decline of density from the same central density to the 
minimum urban area density at two points in time. 
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that involves an increase in the central density and the density gradient while 
simultaneously expanding outwards would have to be considered decentralization, 
which would be nonsense.

The early observations (e.g., Muth 1969; Mills 1972) that density gradients tend to 
be negatively related to the size of an urban area should have led to questioning the 
extent to which the density gradient can be seen as a measure of centralization and 
decentralization. For example, can one realistically believe that the New York urban 
area, with a density gradient of 0.153 in 2020 is much more decentralized than Portland 
or Richmond with gradients of 0.255 and 0.242? Simply solving the negative 
exponential model for the density gradient shows that quantity to be positively related 
to the central density and inversely related to the radius for a circular area. Focusing on 
the the radius may not be quite sufficient, as that necessarily depends on the nature of 
the density decline. However, it is more difficult to argue that the total population and 
housing units in an urban area are determined by the density gradient.

For an urban area that is circular with densities conforming to the negative 
exponential model, the number of housing units can be calculated by integrating over 
area times the negative exponential function of distance. Following Mills (1972), this is a 
simplified approximation for housing units as a function of the central density and the 
density gradient:

where  is the total number of housing units in the urban area and  is a constant. 
Solving for the density gradient   gives

     and     

so the density gradient should be positively related to the central density  and 
inversely related to the number of housing units. Regressing the estimated density 
gradient for the urban areas in 2020 on the square root of central density and the square 
root of the number of housing units gives

 = -0.062 + 0.063  - 0.107     (density in thousands, housing units in millions)

 = 0.595
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This demonstrates that the density gradient is highly dependent on the central density 
and the size of the urban area and shows that if the central density remains constant as 
an urban area grows, the density gradient would be expected to decline.

Negative exponential model estimates for 2020

The nonlinear regression estimates for the negative exponential parameters 
central density and the density gradient and the prediction  for the 40 large urban 
areas in 2020 are considered. The section begins with the basic description of the results. 
This is followed by some simply exploratory models investigating characteristics 
associated with those values.

Basic descriptive statistics are shown in Table 1 for the central density, density 
gradient, and prediction . The mean values are not inconsistent with those obtained 
in other studies, taking into account that the current work uses housing unit densities as 
opposed to population densities (e.g., Edmonston 1975; Guest 1975; Anas, Arnott, and 
Small, 1998; Angel 2012). The minima and maxima show the wide variation in the 
values across the urban areas. This is especially true for the central density with the 
extremely high value over 58,000 housing units per square mile for New York, as noted 
above. The distribution for this is highly skewed, with the median value of about 4,700 
far less than the mean of nearly 7,500. 

Table 1. Basic statistics for central density, density gradient, and prediction  in 
2020.

A clearer picture of the variation is seen when looking at the five highest and five 
lowest areas for each of the three measures. Beginning with central density, New York is 
clearly the high outlier. Three urban areas follow with central densities above 20,000, 
with Philadelphia and Chicago not unexpected, though Honolulu being somewhat of a 
surprise. Portland, the fifth highest, has a much lower central density not much over 
half these values. At the other extreme, central densities in some smaller areas in the 
South are very low, with four under 2,200 units per square mile.

R2

R2

R2

Mean Minimum Median Maximum

Central density 7,464 1,938 4,713 58,533

Density gradient 0.112 0.029 0.090 0.284

R2 0.257 0.050 0.232 0.593
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Table 2. Urban areas with the highest and lowest values for central density, density 
gradient, and prediction  in 2020.

The highest density gradients are greater than 0.2 for a mix of areas of varying 
sizes and in different parts of the country. Four of the five are older urban areas. 
Portland is the exception. Its appearance on the lists for both highest central density and 
density gradient leads one to suspect that the area’s urban growth boundary may be 
playing a role in its development and the distribution of density. Very different are the 
urban areas with density gradients less than 0.04. These a very small gradients, 
indicating little decline of density with distance, a very flat pattern. These are newer 
urban areas of varying size in the South and Southwest.

Urban areas with the highest prediction  are all older areas in the Northeast 
and Midwest. They were developed and grew to significant size during the era where 
the CBDs were dominant and retain a pattern conforming to the prediction of the 
negative exponential decline of density with distance. Again, the urban areas having the 
lowest prediction  values, less than 0.10, are newer areas that have experienced much 
of their development in recent decades. It is not surprising that three of these areas are 
also among the five areas having the smallest density gradients. With very little decline 
in density, these areas have less variation to be explained, so random variation in 
densities becomes relatively more important.

The lists of the areas with the highest and lowest values suggest clear regional 
variation in these values. Considering the means for the urban areas in the four regions, 

R2

Area Central 
density Area Density 

gradient Area R2

New York 58,533 Philadelphia 0.284 Rochester 0.593

Philadelphia 26,364 Rochester 0.265 Philadelphia 0.567

Chicago 22,912 Portland 0.255 New York 0.527

Honolulu 20,279 Richmond 0.242 Cincinnati 0.470

Portland 12,421 Hartford 0.219 Milwaukee 0.464

. . . . . . . . . . . . . . . . . .

El Paso 2,350 Las Vegas 0.038 Memphis 0.096

Memphis 2,176 Orlando 0.036 Phoenix 0.095

Jacksonville 2,082 San Antonio 0.035 Albuquerque 0.065

Birmingham 1,953 Phoenix 0.030 Las Vegas 0.051

Oklahoma City 1,938 Oklahoma City 0.029 Oklahoma City 0.050

R2

R2
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central densities are highest in the Northeast and lowest in the South, with the other 
regions in the middle. The same is true for the density gradients. While the urban areas 
in the Northeast also have the highest mean prediction , the areas in both the South 
and West have the lowest values, with the areas in the Midwest in the middle.

The locations of the urban areas based on their prediction  values is shown on 
the map in Figure 3. The areas have been divided into four groups of ten areas, with the 
areas having the highest  shown in darker red, those with the lowest in light yellow, 
and the intermediate groups in shades of orange. Most of the areas with the highest 
prediction  are located in the northeastern quarter of the country. Charlotte is a little 
farther south, New Orleans is one of the older cities in the country, and then once again 
is Portland. Most of the next group, in the darker orange, are in the Northeast and 
Midwest census regions with Denver and Los Angeles the outliers. For the group with 
the second lowest  values, Detroit and Kansas City are the outliers with the rest

Figure 3. Urban areas classified by negative exponential model prediction .
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spread across the South and West. Finally, those urban areas in the lowest are clearly in 
the sunbelt, in the South and Southwest.

An exploration is undertaken of the association of some characteristics of the 
urban areas with central density, the density gradient, and the prediction  in 2020. 
The approach takes a small set of urban area characteristics and uses regression to 
identify those that are statistically significant predictors of the negative exponential 
model results. The variables include the size of the urban area (number of housing 
units) and measures of change from 1970 to 2020, variables capturing the extent to 
which water and mountains serve as barriers to expansion, and when appropriate 
urban area density and change and other negative exponential results. The barrier 
variables are the proportion of the area of a five-mile ring surrounding the 2020 urban 
area covered by major bodies of water (oceans or the Great Lakes) and by mountainous 
lands. More detail on these measures is provided in an earlier paper on density and 
barriers to urban expansion (Ottensmann. 2023b).

Two variables are statistically significant in the regression predicting central 
density in a model that accounts for a large share of the variation, with an  of 0.70. 
The results are given in Table 3. The larger the urban area, the higher the central density. 
This is reasonable as more households mean greater demand for locations closer to the

Table 3. Exploratory regression models predicting central density and density 
gradient in 2020 (standard errors in parentheses).

R2

R2

Independent variable Central density 
2020 Independent variable Density gradient 

2020

Housing units 2020 
(millions)

4,397 *** Log central density 
2020

0.1200 ***

(622) (0.0103)

Proportion ring area 
water

19,077 ** Housing units 2020 
(millions)

-0.0323 ***

(6,192) (0.0045)

Constant
351 Proportion ring area 

water
-0.1281 **

(1,172) (0.0416)

R2 0.701 *** Proportion ring area 
mountains

-0.0504 *

(0.0198)

Constant
-0.8522 ***

(0.0829)

R2 0.810 ***

   * p < 0.05   ** p < 0.01   *** p < 0.001
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center. The water barrier to expansion—the proportion of the area of the ring water—is 
also positively related to central density. Most cities with significant water barriers were 
initially established on the coastline as ports with the CBD located near the water. The 
water reduces the supply of land near the CBD, increasing its price and thus the central 
density.

The prior section showed the density gradient to be related to the central density 
and the number of housing units in the urban area. These are two of the four significant 
variables in the model predicting the density gradient and have the expected signs, log 
of density positively related and housing units negatively related. Table 3 also gives the 
results for this model, which has an  of 0.81. The two barrier variables, water and 
mountains, are both significant and negatively related to the density gradient. The 
presence of the barriers forces an urban area to expand farther outwards where there are  
no barriers compared to an urban are not so restricted. This more distant development 
then produces the lower density gradient.

The lists of the areas with the highest and lowest density gradients and 
prediction  values suggests that the two could be related, with areas having lower 
density gradients having less variation in density giving relatively greater importance 
to random variation, producing a poorer fit for the negative exponential model. The 
results for the model for prediction  in Table 4 show the gradient to be a highly 
significant predictor. Prediction  also tends to be higher for larger urban areas. The 
third variable is the mountains barrier, negatively associated with prediction . One 

Table 4. Exploratory regression model predicting prediction  in 2020 (standard 
errors in parentheses).

R2

R2

R2

R2

R2

R2

Independent variable R2 2020

Density gradient 2020
1.5421 ***

(0.1324)

Housing units 2020 (millions)
0.0198 ***

(0.0061)

Proportion ring area 
mountains

-0.0986 ***

(0.0304)

Constant
0.0539 *

(0.0186)

R2 0.838 ***

   * p < 0.05   ** p < 0.01   *** p < 0.001
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possibility is that development on more uneven terrain has greater variation in density, 
producing a poorer fit for the negative exponential model.

Change in negative exponential estimates 1970-2020

The previous section examined the current performance of the negative 
exponential model. This considers the changes in the performance of the model over 
time, looking at values and their changes from 1970 to 2020. Table 5 lists the basic 
statistics for central density, the density gradient, and the prediction  for each census 
year from 1970 to 2020. The three measures exhibit different trends.

Central density presents a complex pattern. The mean drops from about 7,000 
units per square mile in 1970 to 6,000 over the next three decades but then rises even 
higher to nearly 7,500 in 2020. This is pattern is found through much of the distribution, 
with both the minimum and median showing a similar pattern of decline and then rise, 
though the median does not quite reach the 1970 level in 2020. The maximum, which is 
New York, increases steady over the fifty-year period. Underlying these changes is 
much greater variation across the urban areas. The mean of the changes from 1970 to 
2020 is nearly 500. But the median is -766. Over half of all the urban areas saw a 
substantial decline in the central density while at the same time the mean of the changes 
is positive, meaning larger gains outweighed smaller declines. This was obviously 
affected by the extremely large maximum increase of 15,000 for New York.

The density gradient experienced major declines, with the mean gradient 
dropping by half from 0.20 to 0.10 from 1970 to 2010. This was followed by a modest 
uptick in the final decade. Similar patterns occur for the median and the maximum 
gradients while the minimum fell and they stayed constant for from 2010 to 2020. The 
mean and median changes were similar and consistent with these trends, declines of 
about 0.09. But one urban area increased by that amount, while the urban area with the 
largest decline fell by a huge 0.31.

Prediction  showed the most consistent trends over time, with the mean, 
median, and maximum declining in each decade. The minimum values did not show a 
steady trend, but the values were so small, all less than 0.10, that they reflect very little 
fit to the negative exponential model. The average declines in the  values were 
substantial. The mean dropped from 0.41 to 0.26 and the median from 0.42 to 0.23. So 
the decline in the goodness-of-fit of the negative exponential model expected with the 
decentralization of employment is substantial. The mean and median of the changes 
from 1970 to 2020 are both negative and consistent with the year-to-year observations. 
But as with the other measures, changes for some areas are very large in both directions. 
The greatest decline of 0.52 meant the area had to have been among the highest in 1970 
(it was Jacksonville in second place). 

R2

R2

R2
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Table 5. Basic statistics for central density, density gradient, and prediction  from 
1970 to 2020 and changes from 1970 to 2020.

Especially given that each measure saw large changes from 1970 to 2020 in both 
directions, it is again helpful to examine the areas at the extremes and their changes. 
Table 6 shows the areas having the greatest increases and greatest declines for central 

R2

Year Mean Minimum Median Maximum

Central density

1970 6,989 1,828 4,965 43,120

1980 6,475 1,683 4,108 44,547

1990 6,206 1,709 3,782 47,909

2000 6,031 1,645 3,636 48,006

2010 6,339 1,706 3,979 52,297

2020 7,464 1,938 4,713 58,533

Change 1970-2020 475 -5,738 -766 15,413

Density gradient

1970 0.204 0.070 0.201 0.391

1980 0.150 0.032 0.149 0.289

1990 0.120 0.033 0.108 0.274

2000 0.107 0.031 0.095 0.272

2010 0.100 0.029 0.088 0.256

2020 0.112 0.029 0.090 0.284

Change 1970-2020 -0.092 -0.308 -0.089 0.091

R2

1970 0.410 0.099 0.422 0.644

1980 0.348 0.016 0.354 0.633

1990 0.288 0.041 0.263 0.626

2000 0.283 0.050 0.263 0.642

2010 0.265 0.052 0.246 0.630

2020 0.257 0.050 0.232 0.593

Change 1970-2020 -0.154 -0.518 -0.139 0.105
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density, the density gradient, and the prediction . Considerable consistency exists for 
the areas having the highest increases for all three of the measures. New York, 
Philadelphia, and Honolulu are on all three lists. Chicago and Portland are in the top 5 
for both central density and the density gradient. And these were the areas that had the 
highest central density in 2020. New York, Philadelphia, and Chicago are older, very 
large urban areas. Honolulu is constrained by both water and mountains. And as noted 
earlier, Portland’s urban growth boundary could be playing a role. These are among the 
areas that can be considered most consistent with the negative exponential model, with 
increasing parameter estimates and greater goodness-of-fit over time.

The lists of areas with the largest declines are not so consistent. Four of the urban 
areas in which the central density fell the most, by over 3,000 units per square mile, are 
older rustbelt areas in the Midwest and Northeast. The greatest decline occurred in New 
Orleans which in addition to being an older areas experienced the devastation of 
hurricane Katrina. Note that this decline also placed New Orleans on the list of the areas 
with the greatest decline in the density gradient. The other four areas with the largest 
drops in the gradient also had the largest drops in the prediction  and were located in 
the sunbelt, in the South and Southwest.

Table 6. Urban areas with the highest and lowest changes in central density, density 
gradient, and prediction  from 1970 to 2020.

R2

R2

R2

Area
Change in 

central 
density

Area
Change in 

density 
gradient

Area Change in 
R2

New York 15,413 Philadelphia 0.091 New York 0.105

Honolulu 10,855 Chicago 0.033 Honolulu 0.080

Philadelphia 9,181 New York 0.020 Richmond 0.066

Chicago 6,072 Honolulu 0.014 Philadelphia 0.053

Portland 6,012 Portland 0.000 Milwaukee 0.033

. . . . . . . . . . . . . . . . . .

St Louis -3,390 San Antonio -0.174 Oklahoma City -0.343

Buffalo -3,546 New Orleans -0.184 Las Vegas -0.359

Detroit -4,274 Jacksonville -0.225 Orlando -0.362

Cincinnati -4,637 Orlando -0.300 San Antonio -0.465

New Orleans -5,738 Las Vegas -0.308 Jacksonville -0.518
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The lists of areas having high and low change suggests the possibility of 
differences by region. While there are differences in the means for the central density 
and density gradient across the census regions, they are not statistically significant. 
Prediction  does have significant differences  across the region. The mean decline for 
the urban areas in the South is 0.25. Next lowest is in the Midwest dropping by 0.14, 
with the Northeast and West having even smaller mean declines. The differences in the 
prediction  means across the regions are statistically significant.

The urban areas experience varying changes in the negative exponential 
estimates from 1970 to 2020 suggesting very different trends over the period. Some 
areas show steady increases, some consistent declines, with others remaining fairly 
constant. And some areas go down for a number of decades and then increase, some 
ending up below where they started in 1970 and others above. And in one case an area 
increases and then drops somewhat. To illustrate the variety of trajectories, the values 
for the central density, the density gradient, and the prediction  for each year are 
plotted for a few selected urban areas.

Trends for central densities from 1970 to 2020 are shown in Figure 4. Two urban 
areas show consistent change over time, Austin (in red) increasing, and Cincinnati 
(purple) decreasing. Two more areas are examples of the decline and then rise seen for 
the means but with different final outcomes. Milwaukee (green) drops for three decades 
and then increases, but never gets back to the starting level in 1970. Central density in

Figure 4. Estimated central densities for selected urban areas from 1970 to 2020. 
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Portland (orange) first declines but then shoots up to about twice its initial level by 
2020. Finally, Las Vegas (blue) does the opposite, first rising and then falling. The 
changes are not large. But this case is unique in that this is the only instance of this 
among all of the urban areas for all three of the negative exponential measures.

Figure 5 displays the density gradients over time for four different urban areas. 
The gradient for Philadelphia (green) increases over time. Orlando’s gradient (red) 
plummets, dropping to only 0.04 in 2020 from its initial level of 0.34. Charlotte (orange) 
is the example here of that pattern of decline followed by an upswing. If one looks 
closely, Los Angeles (blue) displays a similar pattern but the changes are so small that it 
is better seen as an example of an area for which the gradient has remained relatively 
stable over time.

Figure 5. Estimated density gradients for selected urban areas from 1970 to 2020.

New York (orange) exhibits a moderate increase in the prediction  over the 
fifty-year period as illustrated in Figure 6. Jacksonville (red) is the example for declining 

, but the change is anything but modest. Its value drops from 0.62 in 1970, a very 
good fit to the negative exponential model, to 0.10 in the final year. The pattern of first 
decrease and then increase is exhibited here by Richmond (purple). Rochester (green) 
and Albuquerque (blue) are offered has examples of urban areas in which the  values  
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Figure 6. Estimated prediction  values for selected urban areas from 1970 to 2020.

stay fairly constant over time but at very different levels. Rochester has the highest 
prediction  among all urban areas in each of the years. Albuquerque was either the 
lowest or close to the lowest in every year.

Exploratory models are developed to consider the association of urban area 
characteristics with the changes in central density, the density gradient, and the 
prediction  from 1970 to 2020. The procedure used for the previous analysis focused 
on the 2020 values of these measure is followed here: Regression models are created 
with statistically significant predictors from the same limited list of variables. The 
results are exactly what one would expect given the earlier findings for predicting the 
values in 2020. These models are completely consistent with the earlier models.

Table 7 gives the regression model results for the models predicting the change in 
central density, the density gradient, and the prediction . Starting with the change in 
central density: Two variables are significant in the prediction of central density in 2020, 
the number of housing units and the water barrier. For the change in central density 
from 1970 to 2020, these two are again significant, along with the change in the number 
of housing units from 1970 to 2020. So for the change in central density, both the size of 
the urban area and the change in size are significant predictors.

In predicting the density gradient in 2020, the log of central density and the 
number of housing units are two of the four significant predictors. Here, for the change 
in the density gradient, the percent change of central density from 1970 to 2020 is 
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Table 7. Exploratory regression models predicting change in central density, density 
gradient, and prediction  from 1970 to 2020 (standard errors in parentheses).

significant along with both the log of housing units in 1970 and the percent change in 
the number of housing units over the period. The model predicting the density gradient 
in 2020 also includes both barrier variables, for water and mountains. These measures 
are not significant for predicting change in the density gradient.

R2

Independent variable
Change in 

central density 
1970-2020

Independent variable
Change in 

density gradient 
1970-2020

Housing units 1970 
(millions)

2,556 *** Percent change in central 
density 1970-2020

0.00128 ***

(536) (0.00011)

Change in log housing 
units 1970-2020

2,761 **
Log housing units 1970

0.01979 **

(883) (0.00634)

Proportion ring area 
water

7,660 * Percent change in 
housing units 1970-2020

-0.00020 ***

(3,461) (0.00003)

Constant
-4,548 ***

Constant
-0.29521 **

(1,205) (0.08314)

R2 0.530 *** R2 0.846 ***
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Independent variable Change in R2 
1970-2020

Density gradient 1970
1.059 ***

(0.206)

Change in density gradient 
1970-2020

1.998 ***

(0.192)

Proportion ring area 
mountains

0.128 *

(0.048)

Constant
-0.206 **

(0.039)

R2 0.760 ***

   * p < 0.05   ** p < 0.01   *** p < 0.001



For predicting  values for 2020, the density gradient, the size of the urban area, 
and the mountains barrier are the three significant variables. Table 8 shows both the 
density gradient in 1970 and the change in the density gradient to be significant for the 
change in , as is the mountains barrier variable. However, neither the size of the 
urban area nor the change in the size of the area are significant.

Conclusion

The urban areas exhibit tremendous variation in their patterns of density decline 
with distance from the CBD and how those patterns change over time. This means that 
simple conclusions about the results are not always possible. Making general statements 
about the findings from this study will require caveats. And even then it is important to 
recognize that it will be impossible to summarize the full range of the variation.

Starting with the negative exponential decline of density in 2020, central 
densities range from under 2,000 to nearly 60,000 units per square mile. A few older, 
very large urban areas have the highest central densities, and the mean is greatest for 
the urban areas in the Northeast. The number of housing units in the urban area and the 
extent to which water is a barrier to urban expansion are significantly related to the 
level of the central density.

The discussion of the reason that the density gradient is not a good measure of 
decentralization suggests that the gradient should be negatively related to the size of 
the urban area and directly related to the central density. Results confirm this, with the 
gradient significantly related to both of these variables and to the water and mountain 
barriers to expansion.

The predicted  for the model in 2020 ranges from a high of 0.59 (over half the 
variation in density accounted for) down to 0.05 (the negative exponential model hardly 
fitting the density pattern at all). The map of the urban areas by their  values shows a 
clear pattern. Most of the ten areas with  highest are located in or near the Northeast. 
Those in the bottom quarter fall in a line stretching across the Sunbelt. This begins to 
account for the variation in the performance of the negative exponential model. Urban 
areas in the Northeast grew to substantial size in the nineteenth and early twentieth 
century, an era in which the CBD emerged and was dominant, with employment 
concentrated near the center as assumed in the monocentric model. The Sunbelt cities 
experienced most of their growth much more recently. They were small and did not 
have significant CBDs in those earlier years. 

The changes in the negative exponential model values since 1970 gives some 
insight into what gave rise to these patterns. However it is important to stress that the 
urban areas followed very different trajectories with those values over the fifty years as 
illustrated above. The mean central density declines from 1970 to 2000 but then jumps 
significantly by 2020. This is an interesting and potentially very important development. 

R2

R2

R2

R2

R2

24



It will take more data and likely more time to understand the reason for this and to 
assess the significance. The small values for the mean and median changes, one positive 
and one negative, tell little about how central densities changed in the urban areas. The 
variation is astounding, with a drop of nearly 6,000 for one area (New Orleans) and an 
increase of 15,000 in another (New York). Change is positively related to the size of the 
area in 1970 and the change in the log of housing units over the period.

Just as the gradient is related to the central density and the size of the urban area, 
the change in the gradient is positively related to the change in the central density and 
to the size of the urban area in 1970. But it is negatively related to the change in the size 
of the urban area. More rapidly growing areas have greater declines in their density 
gradients. As the edge of the urban area extends farther out, the negative exponential 
curve would have to do so as well, decreasing the gradient.

Finally the change in predicted  from 1970 to 2020 addresses the question as to 
whether the performance of the negative exponential model has declined over time. The 
mean change was -0.15 with urban areas ranging from -0.52 to +0.09. So the average 
urban area saw the drop in predicted  from 0.41 in 1950 to 0.26 in 2020, a not 
inconsiderable decline of nearly forty percent. As the positive changes in  for some 
urban areas shows, decline is not universal, but only a small number of urban areas had 
increases. So it is reasonable to conclude that the predicted  values generally have 
been declining and the negative exponential model is doing more poorly in accounting 
for the variation in density within large urban areas.
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Appendix: Nonlinear versus log linear estimation

Log linear estimation of the negative exponential model gives diminished weight 
to errors in the prediction of higher densities near the center, resulting in the potential 
underestimate of the central density. For this reason, nonlinear regression is used to 
estimate the values for the negative exponential model for the large urban areas.

Results for the New York urban area described above provide the specific (and 
extreme) example of this problem. In this appendix, the results for nonlinear and log 
linear estimation of the negative exponential model for all forty urban areas in 2020 are 
compared. Table A-1 gives the basic statistics for the nonlinear and log linear estimates, 
the difference, and the percent difference for the central density, the density gradient, 
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and the  values. The log linear estimates are most often lower than the nonlinear 
estimates, with some of the differences substantial.

The mean difference between the nonlinear and log linear estimates of the central 
density is over 4,000 units per square mile. The mean percent difference has the log 
linear estimates 41 percent lower. The log linear estimates are lower for every urban 
area, though the differences ranged from and eight percent decline to an 81 percent 
decline. The maximum decline is for the New York area, with Philadelphia in second 
place. These two also have the greatest percent decline but swapping positions, with 
Philadelphia highest.

The mean log linear estimate of the density gradient of 0.062 is just over half the 
nonlinear gradient of 0.112. The mean percent decline from the nonlinear to log linear 
gradients was -31 percent, a drop of nearly a third. However, the maximum difference 
and percent difference of 0.019 and 44.7 percent show that not all urban areas have

Table A-1. Basic statistics for nonlinear and log linear estimates of central density, 
density gradient, prediction  in 2020 and the differences and percent differences.

R2

R2

Year Mean Minimum Median Maximum

Central density

Nonlinear estimate 7,464 1,938 4,713 58,533

Log linear estimate 3,224 1,212 2,451 13,584

Difference -4,241 -44,949 -1,763 -205

Percent difference -40.6 -81.0 -39.4 -8.2

Density gradient

Nonlinear estimate 0.112 0.029 0.090 0.284

Log linear estimate 0.062 0.019 0.053 0.212

Difference -0.049 -0.220 -0.034 0.019

Percent difference -31.6 -77.6 -39.2 44.7

R2

Nonlinear estimate 0.257 0.050 0.232 0.593

Log linear estimate 0.178 0.016 0.160 0.491

Difference -0.079 -0.345 -0.083 0.177

Percent difference -26.6 -82.4 -35.4 81.8
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lower log linear estimates of the density gradient. For seven areas, the log linear 
estimate of the gradient is larger than the nonlinear estimate.

Mean  values are 0.26 for the nonlinear estimates and 0.18 for the log linear 
estimates, with the mean percent difference of -27 percent. As with the density gradient, 
the log linear estimates the  values are greater for some urban areas. Seven areas also 
have increases, though only two urban areas, Albuquerque and Jacksonville, increase 
for both the density gradient and . (These two areas have shown up as having 
extreme values in some of the earlier results.)

The similarities in the percent changes between the nonlinear and log linear 
estimates for some of the basic statistics is striking. The mean percent change for the 
central density is -41 percent, for the density gradient -32 percent, and the  values -27 
percent, differences of generally comparable magnitude. But the comparisons are more 
striking for the minima and medians. For the minima, the mean percent changes are -81, 
-78, and -82 percent for central density, density gradient, and . These results for the 
median were -39, -35, and -35 percent respectively. Only for the maxima was there a 
divergence. All of the central density differences were negative. The density gradient 
and  had some positive changes, the significant maxima of 45 and 82 percent for the 
density gradient and . Those positive values account for greater differences in mean 
percent change among the means compared to the medians. 

Figure A-1. Histogram of distribution of urban areas by percent difference between 
nonlinear and log linear estimates of central density in 2020. 
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The estimate of the central density can influence the density gradient which in 
turn can influence . This makes the variation in the differences in the nonlinear and 
log linear estimates of the central density especially important. Figure A-1 is a 
histogram of the distribution of the urban areas by their percent difference in the central 
density estimates. From Table A-1, the values range from -8 percent to -81 percent. Only 
two of the urban areas have declines of less than ten percent and only two areas have 
declines greater than seventy percent. The remaining urban areas are relatively 
uniformly distributed across the interval from -10 to -70. The differences between the 
nonlinear and log linear estimates vary widely but are generally more than minimal.
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